Definability in the lattice of equational theories of semigroups
نویسندگان
چکیده
We study first-order definability in the lattice L of equational theories of semigroups. A large collection of individual theories and some interesting sets of theories are definable in L . As examples, if T is either the equational theory of a finite semigroup or a finitely axiomatizable locally finite theory, then the set {T, T } is definable, where T ∂ is the dual theory obtained by inverting the order of occurences of letters in the words. Moreover, the set of locally finite theories, the set of finitely axiomatizable theories, and the set of theories of finite semigroups are all definable. * The research of both authors was supported by National Science Foundation Grant
منابع مشابه
Definability in the Lattice of Equational Theories of Commutative Semigroups
In this paper we study first-order definability in the lattice of equational theories of commutative semigroups. In a series of papers, J. Ježek, solving problems posed by A. Tarski and R. McKenzie, has proved, in particular, that each equational theory is first-order definable in the lattice of equational theories of a given type, up to automorphism, and that such lattices have no automorphism...
متن کاملThe Existence of Finitely Based Lower Covers for Finitely Based Equational Theories
By an equational theory we mean a set of equations from some fixed language which is closed with respect to logical consequences. We regard equations as universal sentences whose quantifierfree parts are equations between terms. In our notation, we suppress the universal quantifiers. Once a language has been fixed, the collection of all equational theories for that language is a lattice ordered...
متن کاملDefinability for Equational Theories of Commutative Groupoids †
We find several large classes of equations with the property that every automorphism of the lattice of equational theories of commutative groupoids fixes any equational theory generated by such equations, and every equational theory generated by finitely many such equations is a definable element of the lattice. We conjecture that the lattice has no non-identical automorphisms.
متن کاملThe equational theories of representable residuated semigroups
We show that the equational theory of representable lower semilattice-ordered residuated semigroups is finitely based. We survey related results.
متن کاملVarieties of Commutative Semigroups
In this paper, we describe all equational theories of commutative semigroups in terms of certain well-quasi-orderings on the set of finite sequences of nonnegative integers. This description yields many old and new results on varieties of commutative semigroups. In particular, we obtain also a description of the lattice of varieties of commutative semigroups, and we give an explicit uniform sol...
متن کامل